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Abstract
The Intermittent Upwelling Hypothes{JH) posits that subsidies of larvae and phytoplankton
to intertidal"eemmunitieshouldvary unimodally along a gradient of upwelling from persistent

upwelling to persistent downwelling with most subsidies occurring where upwelling is of
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intermediate strength and intermittelatirthermorethe hypothesis states that larvae and
phytoplankton are transported far offshore by strong, persistent upwelling and fail to gubsidiz
nearshore communities, whereas weak upwelling or downwelling reduces nuttents f
phytoplankton production limiting food for larvae and nearshore communities. We review
studies conducted at sea and onshore and reanalyze publishedektttheo|UH an@valuate
alternativeshypotheses. To test the hypothesis, we exdivengredictions that must hold if the
IUH is true"1)Larvae should inhabit the surface Ekman layer where they are transported

offshore during'upwelling. Larvae of many intertidal taxa occur deeper in the water column
wherecurrents flow shoreward during upwelling.2arvae of near shore species should occur
farther offshoreduring upwelling than during relaxation or downwelling. Larvae of many
nearshore species remain within several kilometers of shuwneg both conditions.)3.arval
settlement in intertidal communities should be lower during upwelling than relaxation or
downwelling. Daily larval settlementhas not observed to be higher dunetaxation or
downwelling eventssettlement has most often been seen towélythe fortnightly tidal cycle
likely due tevonshore larval transport by internal tidg@d.atval settlement and recruitment in
intertidal communities should be lower in areas of strong, persistent upwelling than where
upwellingisweaker and less persistent. Recruitment of mussels and barnacles to artificial and
natural substrates did not vary with the strength of upwelling, but did vary inverselyuwi
measures of desiccation potential, and directly with indicators of surfzone hydmdgnkarval
recruitment was higher where surf zones were rdm&pative with rip currents)5

Phytopl ankten‘subsidies to near shore communities should be highest where upwelling is

moder ate andinter mittent. Like larval subsidies, phytoplankton subsidies varied spatially with
surfzone hydrodynamics rather than upwelling. This reconsideration of the evide el t

finds the hypothesis unsupported.

Key Wordsissurf zone, barnacles, settlement, subsidies, intertidal, recruitment|snusse

hydrodynamies, dessication
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The importance of larvalettlementind postsettlement mortality to the dynamics of
marine populations and communities has been investigated for over a century (RRDgan
Along the west coast of the USA,considerable body of research demonstrated the importance
in the Pacific Northwesif postsettlement mortaliiy regulatingrocky shore communities. In
contrastjn a:highly influential papeRoughgarden et al. (1988) proposed katlarval
settlementegulatedntertidalcommunities in Californialhey hypothesized th#rvae
developingn'strong, persistent upwelling off Califorréae swepsofar offshore bysurface
currents thatfew of them return to shtwesettle Consequently, gpulations are recruitment
limited in the strong, persistent upwelling aldhg California oast, whereaan abundant
supply of larvae in the weaker, less persistent upwelling in the Pacific Northwest results in
postsettlement’‘densiyependent regulation of populations

A corollary to this hypothesiwasthat the alongshore distribution of upviredj also
affects the delivery of phytoplankton food subsidies to the intertidal (d@ege and Menge
2013). Winddriven coastal upwelling draws nutrient rich waters from depth teupbotic zone
close to theseoast leading to high phytoplankton productisignding stocks aralibsidies to
intertidal communitiesHowever if upwelling is strong and persistent, blooms are transported
far from sherg(Botsford et al. 2006), and subsidies of phytoplankton to the intertidal
commupitiesare hypothesized to be loBuring relaxatiorof upwelling or downwelling events,
the influx of nutrients is low leading to lower phytoplankton productivity, standing séouaks
subsidies to intertidal communitieBhus, phytoplankton subsidies to the shore should be higher
in regions ofmoederatantermittent ypwelling thanwhere upwellingor downwelling arestrong
andpersistent

Critical tests of the effects of upwelling on larval recruitnteante beermonducted at sea
as well as.onshore, and we review this literaturedonsiderthe importance dftitudinal
variation inupwelling onlarval settlement and recruitmeand phytoplankton subsidies to rocky
shore populations and communitiés. well as reviewing published researale reanalyzed
somepublished datto evaluate new explanations forsultsformerly attributed to upwelling
Thehypothesis originated over 30 years agth much of the supporting evidencemingfrom
studies conducted alonige West Coast of North Americandconsequetty, we have focused
on the California Currentarge Marine Ecosystem (CCLME)WVe addres$ive predictions or

expectations of the Intermittent Upwelling Hypothesis that must hold if the hypoithé&sis.
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We selected these five predictions because they ar&éyptbsts of the hypothesis and

published data are available to actually make the tests. The first two predictions deal with the
pelagic phase of larval dispersal and the last three with the delivery of subsidies (larval settlers
and phytoplankton) to the shore and their subsequenitreent.None of the predictions of the

IUH wassupperted by the evidence.

Prediction"I"arvae spend most of their timein the surface Ekman layer where wind-driven
upwelling eurrents transport them offshore.

When upwelling favorable winds (from therth n theCCLME) blow parallel teshore,
due to the Coriglis effecflow in thesurfaceEkman layer (upper 10 to 20 mg)downwind and
offshore causing a drop in sea level at the coast and, to compensate, water from below the
Ekman layer flows onshore (Mann and Lazier 1991). During dowimgedhvorable winds
(from the south in the CCLME), the flow regime is revers&gen this flow regime drvae in
thesurfaceEkman layer will be transported offshore during upwelling and back toward the shore
duringrelaxation odownwelling,and larvaéelow the Ekman layer will experience transport in
the opposite directions.

Fortheir 1988 paper, Roughgarden et al. analyzed samples from oblique zooplankton
tows colleeted by CalCOFI (California Cooperative Fisheries Investigai®part of a long-
termstudy of variations in sardine and anchovy populations in the CCLME; oblique plankton
tows, however, provided no indication of the depth inhabited by larvae caught in theAtows.
number ofresearchers have subsequently colleetitally stratifiedsanplesfrom throughout
the water celummo test this hypothesis (see for example Shanks and Shearman 2009, Morgan et
al. 2009b).These studiedeterminedhat larvaeof mostnearshore speciegcur below the
surface Ekman layer. For example, Shanks&imearmanZ009 found that the larvae of all
intertidal barnacles and all stages of these barnacles were daeglet than the Ekman layer;
during upwelling they inhabited tlteepemupwelledwater that was flowing shorewaasd
during downwelling theyvere found deeper as well andy be transported offshore. Morgan et
al. (2009b)'showed that larvae of most of the 46 species of crustaceans cbiabieid
sampling occurredeepeiin the water column throughout the day or rmsthe surface at night
after strong afternoon upwelling winds subsided (Morgan and Fisher. 208 werdarvae of
some species that did occupy the surface layer and they were tranftinesadffshore before
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returningto thenearshore late in developmenarizae of moshearshore speci@d invertebrates
do not spend most of their time in thaerfaceEkman layerandin fact, many spenbktle time in
the surface Ekman layeBimilar results have been found by Bartilotti et al. (2014) in the

upwelling regime of the Iberian Peninsulduese results amot consistent with Prediction 1.

Prediction 2. L arvae of nearshore species should occur farther offshore during upwelling than
during relaxation or downwelling.

As 'support for their hypothesis, Roughgarden et al. (1988), using the CalCOFI samples,
correlated thenastseaward extent of barnacle larvae from shdtk the strength of upwelling
and found.thalarvae tended toccurfarthest offshoreduring strongupwelling. Anchovies and
sardines inthe’CCLME tend to spawn wafshore, andhe CalCOFI samples analyzed by
Roughgarden et al. were designed to capture these lars@ec@nsequence, the most nearshore
station sampled by CalCOFI tended to be 5 nm (9 km) offshore (Roughgarden et al. 1988).
Intertidal barnacle larvae are released stgare in the coastal boundary layghere crosshore
currents areygenerally sladue to friction with the bottom and shore (Nickols et al. 2012,
Nickols et'al."2013); given current speeds in the coastal boundaryitayeruld take days for
larvae to'be. transportddr enough offshore to be caught during CalCOFI sampling. Perhaps the
CalCOFLsamples were collected sod&shore that they actually missed the bulk of the
barnacle larvaeBecausehe cross-shelf distribution and abundance afidele larvae was not
determinedthdr samplesnayrepresent théew unfortunate individuals that were larval
wastage.

Subseguent studies filled this gaypsampling at stations from several hundred meters to
70 km offshoren the CCLME(Morgan et al. 2009a, Morgan et al. 2009b, Shanks and Shearman
2009, Morgan 2014), other upwelling regimes (Poulin et al. 2002, Batrtilottii et al. 2014, Morgan
2014)and elsewhereShanks et al. 2002, Shanks et al. 2003, Shanks and Brink Z0@5g
studiesdeterminedhat the larvae of barnacles amdnyother nearshore speciesinvertebrates
remain closeto shore rather than being transported offshore by strong upwellingscéioe
example, Shanks and Shearman (2000nd that all larval stages of all the intertidal barnacles
were found close to shore, within several km of shore, andhibiataverage distance offshore
(generally < 2 krpdid not vary with upwelling or downwellingimilar results were obtained for
barnacles as well as many other species of nearshore crustaceiues studiegMorgan et al.
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2009a, Morgan et al. 2009b, Fisher et al. 20Mx.eover, thesétterstudiesfoundthat larvae
of species developing over the mid or outer continental shelf did not occur farther offshore
during strong upwelling conditioresther.

The conclusion from these studies is that upwelling does not sweep larvae of many,
perhaps most;.interid species far offshor®y avoiding the surface Ekman layer, larvae of
most specieare not carried offshore by upwelling but, instead, remain within several kilamete
of shoré'throughout their pelagic development. These results are not consist@&mnediittion2.

The dispersal of those larvae of intertidal and shallow subtidal speciesrttzan within
several kilometers of shore is under the influence of nearshore hydrodynamics deadhio a
number of.consequences.Oyring upwelling the wam, lower density surface layer of the
ocean is pushed offshore and is replaced by cold, denser upwelled \wats tWo water
masses meet farmiran upwelling front between the calgwelledwateronshoreand the warm
surface water transported offsh@a®und 10 to 15 km from shoflann and Laier 1991) As
the upwelling season progresseth@CCLME, large eddieknown as jets and squirts, develop
in the Califernia Current, which transport comtirial shelf water far seawafidorso and Huyer
1986, Strub et:al. 1991, Strub and James 2@@yentdrifters set seaward of the upwelling
front tendite be entrainad thesgets and squirts arare carried far from sho(@arth and Smith
1998, Barthet al. 2000), as would larvae of many roclsjsties that develdgeyond the
upwelling front (Fiedler 1986, Haury et al. 1986) contrast, drifters set landward of the
upwelling front tend to be carried backviardshore where thegftenrun agroundBarth and
Smith 1998;"Barth et al. 200Because larvae of most nearshore taxa comgiatelopment
well landward-0f the upwelling front, they should seldom encounter jets and squirts aad inst
be transported onshore likige drifters set landward of the upVirsd) front (Austin and Barth
2002). 2) During upwelling, the most rapid alongshore current is within the upwelling jet
associated.with,the upwelling frorut the jet does not affect the rate of alongshore larval
transport for.th@nany intertidal specigbatcomplete their pelagic development in waters
kilometers landward of the jet (Kosro et al. 1997). &MJaeof intertidal and nearshore species
arereleasedhe coastal boundary layer, retarding seaward and alongshore dispersal (Morgan
et al. 2009a, Nickols et al. 2013, Hameed et al. 2016). 4) During the upwelling season, roughly
every week or two winds shift from upwelling to downwelling favorgMeann and Lazier

1991). During upwelling favorable winds in the CCLMt&arshore currents flow to the squth
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and during downwelling, they reverse and flow north (in the Southern Hemisphere wind driven
upwelling systems currents are reversed). Larvae of most intertidal fishes and benthic
invertebrates that spawn during the upwelling season are likely transported alerggharorth
and south as wind reversals occur duthmgy four to six week planktoniphase (average 45

days) (Shanks,and Eckert 2005). By capturing this variation in current diréatae may

tend to remain.closer to their point of releésargier 2003).

How'do slowly swimmindarvaeremaining below the surface Ekman layer stayghly
the same distance offshawgher than beingransported shoreward during upwelling and
seaward during downwelling? As water shoals close to stimdaroclinic currents generated
by Ekman.transport are suppressed (Austin and Lentz 260&)g crossshelftransporiof
larvae Water within the coast&éoundary layer is, however, exchanged during wind reversals
(Csanady 1974), which should transport larvae embedded in the water mass alongfwith it i
larvae behaved as passive particles. Ladeapot remain adiched to a water mass indioat
that they are far from passiv@hanks and Brink (200%¢peatedly samptka transect
perpendicularto shore for ovenaekwhile winds shifted from upwelling to downwelling and
back to upwelling. Tie water mass adjacent to shore was exchangkaach wind shift,
whereasslowly swimmingbivalve larvaeof nearshore tax@mainedoughly the same distance
offshorerather thartrackng water masses as they were exchangdttiough heseobservations
were made on the easiast of North Americawhich is not a predominantlyind-driven
upwelling 'system, the horizontal banoat crossshelf currentgenerated by upwellingerestill
at least ansorder of magnitutiester thararval swimming speed$hanks and Brink 2005Jhe
authors hypethesizatiat by swimming vertically in the much slower downwelling (upwelling)
currentsconverging (diverging) against the shore, larvae may have been able to maintain their
position close to shore despite the exchange of water masses. A similar mechanism may be
occurring in.winddriven upwelling systemassociated with eastern boundary currents like the
California Current
Prediction 3«Daily settlement of larvae in the intertidal zone should be lower during upwelling
and higher during downwelling conditions.

Upwelling surface currentsere hypothesized to cause enough offshore tranfport
larvaeto be lost to coastal populatioresulting in lowsettlement at the shqrehereas the
reverse is hypothesized to occuring relaxation from upwelling or downwelling conditions

This article is protected by copyright. All rights reserved
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(Farrell et al. 1991, Roughgarden et al. 199here are two mechanisms that may transport
larvae shoreward during a downwelling or upwelling relaxation eentlescribed above, a

front isformed offshore separating the cold upeéilvater from the warm surface water thas ha
been pushed offshore. Following an upwelling event (e.g., onset of dliwgaor upwelling
relaxation)the.cool upwelled water sinks back to a stable vertical lbligioin and the warm
waterbeyond the upwelling frorftows back toward shore as a density cur(&tianks et al.

2000) Ifpriorto'thecommencement of neupwelling, larvaearereleased into the warm surface
waterand remain therehey will be transported offshore during subsequent upwelling and they
will occurin the lens of warm water on the seaward side of the upwelling front. With relaxation
of upwelling-favorable wingl, they will be transported back toward shore by the density current.
When this‘lens‘of warm water contacts shore and remains in coitathe shoresettlemenin
intertidalcommunitiesshould be higher. The warm water flowing back toward shore takes the
form of a moving convergent front with surface flow toward the front from both the wadm a
cool water:sides of the front (Shanks et al. 2000). Larvae carried into the conveygecan be
transportedsshoreward by the moving convergence (Shanks et al. POBQO)ill also lead to

higher settlement at the shore during downwelling events, but the settlemeid appear as a
brief pulse.as the front arrivesshore.

A number of studies have measured barnacle settlement and the abundance of crab
megalopae at the shore daily or every two days and resatist consistent with Prediction 3
(Shanks 1983, Shanks 1986, Farrell et al. 1991, Pineda 1991, 1994, Shanks 1998, Shanks 2006,
Roegner etal»2007, Shanks 2009a, b, Shanks et al. 20k$e $tudies consistgntound that
the deliverysofSettlereends to occuin brief pulses of one to several days, déinel pulses are
crosscorrelated with the tidamplitudecycle of springto neap tidesThe fortnightly periodicity
in settlement i1s mosikely due to onshore transport by the internal tides either by moving
convergences.over these internal waves or by internal bores generated by linézrial
waves(Shanks. 1983, Pineda 199Cpntrary to expectationsrval settlement was not related to
relaxation.events; iwasactually higher during upwelling, but the positieéfect ofupwelling
winds on settlement was only apparent after the much stronger fortnightly tidalreftebeen
removed from the time seri€Shanks 2009a). For the purpose of this review of the IUH, the
important point is not that onshore transport of larvae often appears to be dueytgédeathted
internal wavegratherit is that when settlement and lahaundance have been measured daily

This article is protected by copyright. All rights reserved
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there isno evidence for the hypothesizeidher settlemerduring downwelling and relaxation
events.

An apparent exception to these observatigas a paper by Farrell et al.991) in which
they interpreted. their data to indicate that barnacle settlement was higher following a
downwelling.event, althougihey did not statistically test this effeGubsequent timeeries
analysis revealed th#tere was a clear fortnightly effect of thgringneaptidal amplitudecycle
in this data'set'as wedhd no effect of upwelling and downwelling (Shanks 2009a).

At a coastal site near Duck, North CaroliBhanks et al. (2000) sampled an upwelling
front propagating toward shore during an upwelling relaxation event. The front formedragmovi
convergeneegszeone that transgarblue crab Callinectes sapidus) megalopa¢oward shores
predicted by th@UH. Daily abundance oflbe crab megalopasampled during the same period
and at the same sample siteweveryaried with the fortnightly tidal cycléShanks 1998)
suggestinghe megalpaewere regularly transported skeavard by the internal tidehdeed,
observations off Beaufort, North Carolina demonstrated that moving convergencesegebgr
internal wavesranspored blue crab megalopae as well as a number of other larval types
shoreward'Shanks 1988)Ve conclude from these studies thatving convergences generated
by any meehanism can transport larvae (Shanks et al..2000¢ver, @er the continental shelf
moving cenvergences are more frequegtyerated by the internal tidésn relaxation events,
and this mode of onshore transport shows upria series of daily settlement aabundancef
larvaeas a fortnightly signal.

Although he IUH suggests that peaks in the abundance of settlers at the shore should
occur duringsdownwelling and relaxation evemn¢searchers havansistently found that
abundancearies with dortnightly periodicity related to the tidalmplitudecycle. Abundance
peaks related to downwelling or upwelling relaxation evest®not observed. Thu®rediction
3 is not supported.

Prediction 4. \WWhere upwelling is strong and persistent, settlement and recruitment in the
intertidal zone'should be lower than where upwelling is less persistent.

Therational behind thipredictionis that where upwelling is strong and persistent, larvae
of intertidal organismarepushed out to sea and lost to the population; but where upwelling is
weaker and less persistent, laraaetransported shorewaahd settleluring more frequent
relaxation conditiongRoughgarden et al. 1988). The strength and persistence of upwelling

This article is protected by copyright. All rights reserved
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277  changes with latitude (Checkley and Barth 2009), andfdreyesomight larval recruitment to
278  adult populations (Roughgarden et al. 1988hereor when larval supply is highecruitmento
279  adult populations will be high (Menge and Menge 2013). Alongshore variation in the apparent
280 recruitment of barnacles and mussels, which appears to be related to alongshtion in

281  upwelling,has,been presented as amongst tlmgést evidence supporting théH (reviewed
282 in Menge and Menge 2013everapapers have compared latitudinal variatiothie

283 recruitmen®fbarnacles or mussdis the distribution of upwelling within the CCLME

284  (Connollyetali 2001, Menge et al. 2004, Broitman et al. 2888yell as along the coast of

285 Chile (Navarrete et al. 2005The consensus is that where upwelling is strong and persistent
286 recruitmentissewer than in areas of weak upwelling

287 Altheughthe recruitmentlata do appear to support th#H, there are problems both with
288 the data and with the interpretation of the datd warrant reonsideation. As described above,
289 the vertical and crosshelf distribution of larvae do hanatchthe predictions of theJH. Larvae
290 were not in,the surface Ekman layer apavelling did not transport them offshorasteadmost
291 larvaeweresfound below the surface Ekman layer ssrdained within several kilometers of
292 shore. In addition, when settlemievas measured dajliigher settlement rates did not occur
293 during downwelling events, but rathesttlement rate followed fortnightly pattern suggestive of
294 transportto shore by the internal tides. Hence, the underlying rational used to #pla

295 potential effect of upwelling intensity on alongshore variation in recruitment suppbrted by
296 empirical datacollected at seand onshore.

297 Mugh ofithe data on recruitment of barnadias been collected usisgfetyWalk

298 plates, Plexiglaplates covered with neskid SafetyWalk® tape (reviewed in Menge and

299 Menge 2013)The rough surface of the tape appears to be an ideal settlement surface for cyprids
300 that prefer rugose substratbst unfortunately, the tape heats up rapidly in the sun reaching
301  surface temperaturés.g., 40 to 50 °Aethal to settd cyprids in tens of minutes (Shanks

302 2009b) Despite thipotential artifactBroitman et al. (2008) found significacrrelations

303 between reeruitment and cyprid settlersrecovered Safetyalk plates Although the heating
304 problem may.havbeen over emphasizé8hanks 2009b), recruitment data using §aalk

305 plates should be interpreted cautiously becaok® energy variewith latitude asgloes the

306 typical coastal weather at a sitecluding fog often associated with upwelling.

This article is protected by copyright. All rights reserved
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Investigators recently hav®egun teexamine the potential effects ofrkaone
hydrodynamics on the delivery lairvaeand phytoplankton subsidies to shore (Rilov et al. 2008,
Shanks et al. 2010, Morgan et al. 2016, Shanks et al. 2016, Morgan et al. 2017a, Shanks et al.
2017b, Shanks et al. 2017c). Surf zonaxy from reflective (steeply angled shores with narrow
surf zones).to,more dissipat (gently sloping shores with wide surf zones). Surfzone
hydrodynamics can both limit the onshore migration of larvae from the coastalvaite#me
surf zone as‘abarrier, or not hinder shoreward migration (Shanks et al. 2010, Shanks et al.
2017a, Morganet al. 2016, Morgan et al. 2017a). Most rocky shores are steep and, hence,
reflective 'and hydrodynamics coupled with larval behavior tend to hinder the delivery of larvae,
including cyprids and mussels, to the shore. In contrast, more dissipative slabueggrock
platforms associated withide dissipative surf zonesften contairedbathymetriaip currents
that concentrate larvae eddies (Fujimura et al. 2014, Morgan et al. 2016, Morgan et al. 2017b).
Barnacle larval settlement, recruits and population densites significantly higher at more
dissipative,than reflective durones (Shanks et al. 2C4)7

Severalstudies used variatiangecruitment at sites from central California (aboufl85
latitude)northward into Oregon to support théH (reviewed in Menge and Menge 201Bhe
intensity ef.upwelling and its persistence decreadeng this latitudinal transect;washigher
in central.and northern California addcrease northward with, the papers suggest, a sharp drop
occurring north of Cape Blanco, Oregon (Figure Ecmitment tendetb be higher north of
Cape Blanco, consistent with théH. However, dailysolar radiatior{Shanks et al. 2017a) and
maximum intertidal temperatures as measured with Robomisdieuth 1998, Helmuth et al.
2000, Helmuth*2016)Isodecreases along tHetitudinal gradient of stations (Figure 1). In
addition, either due to chance or latitudinal variation in coastal geomorphology, many of the
stationssurveyed north of Cape Blanacerock platforms within wide more dissipative surf
zones (Figure Jwhere settlement wédmsgh due to surfzone hydrodynamics (Shanks et al.
2017a). Lastly,runoff of nutrients from high precipitation may fuel phytoplankton production
thatis several'times greatar the waters over th@regon and Washingtaontinental shelf
(Hickey and:Banas 2008)roviding morgood for adults and larvae thereby increasing
reproductive output or larval survival (Morgan 2001). Thus along this latitudinal trarfsect
stationsthere are consistent trenidsfour variables all of which have the potentialriorease

recruitment to the north.
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At least two studies conductatbng alonger latitudinaltransect sampled sitesth
enough variation in these variables that it might be possible to uatdmegleffects. 1) Broitman
et al. (2008) samplechussel(Mytilus) and barnacl¢Balanus) recruitment toluffy scrub pads
and SafetyWalk plates, respectively, atations distributed from south of Pt. Conception and
within the Seuthern California Bight tworthern OregorNotethis study occurred before it was
discovered, that Safetyalk plates heat up rapidly in the sun (Shanks 2009) and that surfzone
hydrodynamics affect intertidal populations and the delivery of larvae to the(tlareet al.
2008,Shankset'al. 2010). Becently,Shanks et al. (201Yaurveyedhe structure of barnacle
populations, density of aduBalanus and recruit densitfindividuals < 1.5 mm dia.) from San
Diego to nerthern Washington.

These studies sampled sites wittiie Southern California Bighthere the
hydrodynamicsare quite different from the coast to the north of Pt. Conception orcseathar
Channel Islands. Within the Bight, flow along the coast is from the south, aiaedseaker and
more variable, and upwelling is much weaker and less frequent, downwelling condigons ar
more commony(Checkley and Barth 2009). Along the coast northward from Pt. Conception,
upwelling-faverable winds during spring and suminerease in magnitude to around 38fibar
Bodega Bay.and then decrease northward (Figure 1).

Along this latitudinal transectpkar energyaverage daily solar radiation was obtained
from the National Solar Radiation Data Bastp://rredc.nrel.gov/solar/old_data/nsrdb/

decreases.monotonically from south to north (Figure 1), although the actual exposure of
intertidal organisms to solar energy is liketpre complex depending in part on the timing of
daytime lowstides (higher exposure occurs when low spitiegoccur during the hottest time of
the day) (Helmuth et al. 2000ljo capture this effectve analyzed temperature data collected
usingRobomusset (musselmodels with an embedded thermistor) (Helmuth 201.&)raumber
of study sites..Using these data walculatedhe average maximum low tide temperature
(Figure 1)..To.make this calculatione first determinedheaverageand standard deviation of
temperatur@ver theentiretime seriesat each siteadded twice the standard deviation to the
average temperatyrand calculated the average ofthl temperatuschigher than this
temperaturewhichwe havedefined aghe average maximum low tide temperature

We measured surfzone width as a proxy for surfzone hydrodynamics, wider surf zones

aremore dissipative and narrow more reflectidetaileddescription of the methods used to
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369 measure surfzone width and reliability of the data are presented in Shanks et al.¢g017a

370 Briefly, we used images from Google Earth during spring and summer to determine the average
371  width of the surf zone immediatebgaward of the sample sites. Width was from the most

372 seaward breaking wave to the swash.liffee number of useable Google Earth images varied

373 from 3 to 14.and were taken between 2007 and 2014. The distribution of surfzone widths at the
374  studysitesis likely a reflection othedistributionof coastalgeomorphologyFigure 1) For

375 example, the'geomorphology of the Big Sur coast (roughly Pt. Piedras Blancas,t8371°N

376 Lobos, 36:5°N)s very steep with few sandy beachasamore dissipative surf zondsdorth of

377 Cape Mendocino (40.35°N) dissipative surf zones are more common and a number of kites nort
378 of Cape Blanedrequently sampled by intertidal ecologists are rock platforms associated with
379  wide more dissipative surf zones (e.g., Cape Meares, Ya@taasyberry Hill, and Tokakee

380 Klootchan).

381 We reanalyzed data from Broitman et al. (2008) and Shanks et alaj20 Ekamine the

382 effect of solar radiation, average maximum low tide temperasuré&one hydrodynamics

383 indicated bygsurfzone width, and the strength of upwelling as indicated by alongshore @sad str
384 (see Shanks'et'al. 2017a for discussion of alongshore wind stress vs. the Bakon index as proxies
385 for upwelling)on recruitmenbdf Balanus and musselalong the West Coadbata forl) average

386 solar radiation and surfzone width was available for saatiysite (see Shanks et &017afor

387 methods), 2average alongshore wind strelssing the spring and summeascalculatedusing

388 datafrom 15 NOAA weather buoys (see Shanks et al. 2017a for methods) and 3) Redlomus

389 temperature"data are from &ites(Table 1). To assign values of alongshore wind stress and

390 average maximurtow tidetemperaturéo each studgite from Broitman et al2008 and

391  Shanks et al. (2017a)e calculated regressions between latit(iddependent variablend the

392 physical variablesf average maximum low tide temperature and alongshore wind stress

393 (dependentyvariables) and then used these regression eqt@tiaitilate the values of the

394 physical variables at each site (&wanks et al. 2017a for metho@&able 2) We calculated the

395 alongshore.wind stressid average maximum low tide temperatioreeachof the threeyeass of

396 data (2001-2003hat we analyzetfom Broitman et al. (208), calculated the average of these

397 values and used these averages in the regression analysis.

398 Broitman et al. 2008)surveyedhe latitudinal and seasonal variationMstilus and

399 Balanusrecruitmentirom 1997 through 2004, but all 26 sitesre only sampkfrom 2001 to
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2003. The following analysis is limited to these years. b&ta presented as heat maps of the
log of the monthlyecrutment rates (Broitman et al0@28), sowe estimated the recruitment rates
by comparing the heat map color scale to the color for the month with highest annual
recruitment. We_calculatedinearregressions betwedhe log ofrecruitment oMytilus and
Balanus in the Broitman et al. and Shanksaé data sets (dependent variables) and the averages
of daily solar radiation, maximum low tide temperature, alongshore wing,stred log surfzone
width (independent variables).

In theBroitman et al(2008) datarecruitment oMytilus andBalanus were negatively
related tcaverage daily solar radiation and average maxinomtide temperature witk»60 to
almost70%:ofthe variation in recruitment explained by these variables (Figure 2). Given the
heating of Safety-Walk plates when in the sunstheng relationship betweeaaily solar
radiation and average maximuaow tidetemperature anBalanus recruitment was expected.
What was not expected was that the recruitmeMytiius to scrub pads responded similarly.
The open structure of scrub pads may not retain rmaikture;perhaps exposing the mussel
recruits toqdesiccation stress.contrast, the abundance of barnacle recruits (individuals <1.5
mm) surveyed=on natural rock substrate by Shanks et al. (R0adad weakly with daily solar
radigion (=20% of the variation explained) and the average maxitowntide temperature
(12% of the*variation explained). There waresignificantregressions between alongshore wind
stress and any of the recruitment data (Figurédl2three measures of negtment however,
variedsignificantlywith surfzone widthalthoughrelationships to recruitmemtere weakem
the Broitmanet,al2008) study (30 and 22% of the variation explaifeednussels and
barnaclesrespectively than the Shanks et al. datalmarnacle recruit§66% of the variation
explained). This difference might be related to the much straffgcts of daily solar radiation
and average maximuhow tide temperatur@n recruitment to artificial substratestire
Broitman et.al(2008) study than tthe natural recruitment measuteg Shanks et al. (2017a).

Broitman et al. (2008) found that the density of cyprid settlers on the recruitmiest pla
correlated.with recruitment to the plates. Our reanalysis of their data found that rextuitm
varied with'surfzone width, hence, by logical extension, settlement likely alstat@srevith
surfzone width. This matches the findings by Shanks et al. (Z0heéadensity of recits on
natural rock substrates and tleeklyrecruitmentand dailysettlement of barnacles to cleared
rock quadrates all varied with surfzone width, an indicator of surfzone hydrodynamics.
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In an attempt to control for the effect of variation in coastal hydrodynamnecs (i
upwelling and downwelling) on barnacle recruitment and settlement, Shanks et al) (2017a
surveyedclosely spaced pairs of stations (several km to 100s of meters\aplad)fferent
types of surf zone#t some station pairsheyalsomeasured weekly recruitment and daily
settlement te.natural rock surfac8sirfzone widthst some of the pairs of stations were
similarly narrow while in other cases one station had a wide surf zone (more dissipatitre and
other narrow(more reflective). larnacldarval settlement and recruitmedépend®n coastal
hydrodynamies’(e.g., upwelling strength and persistehe) given the close spacing of the
stations, these measures of barnacle recruitment ararszitshould have been the same at
each station pair. If instedldese measuresry with surfzone hydrodynamics, thémese
measureshould be similar attation pairs with narrow surf zonbest differentat station pairs
with wide and narrow surf zones (higlsattlement and recruitmeatthewide surf zone) and
this is exactly what was observed (Shanks éCGdl7a). Thicomparative experiment clearly
illustrated the importance of surfzone hydrodynamicdamacldarval settlement and
recruitmentinsthe intertidal zone

In this‘reanalysis of recruitment data from Broitman et24108) and Shanks et al.
(2017a), we, found no support for an effect of upwelling strength as measured by alongshore
wind dress*on recruitment, a stronieet of two measures gbotentialdesiccation stressn
recruitment to artificial surface3 (ffy scrub padsind Safetywalk plates)a weak #ect of
potential desiccation strees naturabarnacle recruitment, a stronffeet of surfzone
hydrodynamies,as indicated by surfzone width atural barnacle recruitment and a weaker
significant éfect on recruitment to artificial surfaceBheseresults araot consistent with
Prediction 4 but are consistent with surfzone hydrodynamics regulatngacldarval delivery

to the intertidal zonalong the west coast of the USA

Prediction 5. \Wher e offshor e phytoplankton concentrations are higher dueto currentsor
upwelling, subsidies of phytoplankton to theintertidal zone will be higher.
Resources from the coastal ocean subsidize communities and populations in the intertidal
zone (Polis et al. 1997, Krenz et al. 20I0He waters of the coastal ocean are sowtésd
(plankton and detritus) and settling larvae that can sustain populations. Templagapacially
spatial variation in these botteup subsidies have profound effects on the form and function of
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intertidal populationgMenge 2000)Researchers have attributed variations in subsidies to the
shore to alongshore variations in the hydrodynamics over the continentgBslstéfmante et al.
1995, Menge et al. 1999, Connolly et al. 2001, Menge et al. 2003, Broitman et al. 2008, Menge
and Menge 2013Where phytoplankton popations are largedue to the hydrodynamics of
offshore waterssubsidies to the intertidal zone are hypothesized to be Higkeage and Menge
2013). When or where phytoplankton subsidies are higher, the growth rate déétieg
foundation'speciearehigher and their reproductive outpsitarger(Leslie et al. 2005, Bracken

et al. 2012).

Above, we have discussed subsidies of larvae to the shore and related variatia in thes
subsidies to alengshore variation in surfzone hydrodynamics. Subsidies of phytoplankton to the
shore may‘also vary with surfzone hydrodynamics. In two miomidpintensive tudies of a
reflective and more dissipative surf zar®und the Monterey Peninsula, California,
concentratios of coastal phytoplankton in the surf zone (subsidies) at a reflectivevatrare
generallyl0times lowerthanin thewaters just seaward of tiseirf zone whereast a more
dissipativessurf zone the reverse was {Siganks et al. 2016, Shanks et al. 2017b).

To experimentally test if phytoplankton subsidies to the intertidal zone are set by
surfzone hydrodynamics, we attempted to control for phytoplankton concentrations in the coast
ocean(Shanks et al. 2017c¢) lmpmpaing closely spaced ations (median separation 1 km,
minimum 30 m around Cape Arago, Oregon where surfzone width varied from a few meters to
more than 200 m (i.e., reflective tworedissipative surf zones). Station spacing was close
enough that'the concentration of phytojdam in the coastal waters was likely quite sim{ee
Shanks etal=2017c for a discussion of this assumpti@mcé] if subsidies were set by
concentrations on the inner shelf, then concentrations at thesstesighouldhave beesimilar,
but if theywereset by surfzone hydrodynamics, the concentrations should vary with surfzone
width. We found that 65 to 90% of the variation in the concentration of coastal phytoplankton
taxa(Pseudo-nitzschia, Chaetoceros, and dinoflagellates) in the surf zone was explained by
surfzone width.

We reanalyzed data from Bracken et 2042), who sampled the concentration of
Chlorophylla (Chl a) in surf zones adjacent to rocky shores in Oregon. We found that >85% of
the variation in Ché concentrion was explained by surfzone width (Shanks et al. 2017c). In
addition, Bracken et al. (2012) found that mussel growth varied directly with Chl
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concentration; hence, mussel growth must also have varied with surfzone @i&alant
(Unpublished Data) measured reproductive output of musselsaandcles at the same sites
sampled by Shanks et al. (2017c), and found that reproductive output varied with phytoplankton
subsidies, whiclin turnvariedwith surfzone widthas in Shaks et al. (2017c). Shedsofound
thatthe coneentration of coastal phytoplankton species in reflective surf zonegmisasitly
lower thani,seaward on the inner shelf and the reverse was true at more dissipative surf zones, as
did Shanks'etal. (2016, 2017b).

Harmfulalgalbloomtaxa (HABS) are coastal phytoplanki@md their concentration at
the shorelvaries with surfzone hydrodynamics (Shanks et al. 2016). Most exposure of humans to
HAB toxins: oeeurs when people consume shellfish, mostly integfulfish, which have
consumed'HAB specie$hus,the contamination of shellfish by HABs likely varies with
surfzone hydrodynamics (Shanks et al. 2016).

At least over fairly short geographic distances (e.g., Monterey Peninsula) €negon,
and Cape Arago), surfzone phytoplankton concentrations have varied directly with surfzone
hydrodynamies: phytoplankton subsidigere much lower at more reflective than dissipative
surf zones'irrespective of the concentration in the coastal deedraps when test@ver longer
distances'where concentrations of phytoplankton in the coastal ocean are indesut diffdle
controllingsfor surfzone hydrodynamics, the effect of coastal phytoplankton concardrat
subsidies to the intertidal zone will become app&io morerigorouslytest the effect of
surfzone hydrodynamics on the concentration of phytoplankton in surf zameging still
needgo besconductedboth within surf zones of different types asehward in the coastal ocean
along a gradient of offshore phytoplankton concentration.

Perhaps the closest dataset to thislitethat presented in Menge and Menge (2013)
There are,noneasurements of offshore phytoplankton concentration, but the stations sampled
extend from northern California to northern Oregon and include stations from eithef the
South Island.of'New Zealand. These sites cover a range of upwelling conditiongd&omith
weak upwelling to downwelling (New Zealand stations), stronggierg upwelling (California
stations) and.intermittent upwelling (Oregon statioms)test for the effect of surfzone
hydrodynamics on phytoplankton subsidies, we digitizgd thFigure 4from Menge and
Menge(2013) using ImageJ and determirmeragesurfzone widths from Google Earth images
of thestudy sitegSee Shanks et &017a, c for methods).
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Menge and Meng€013) found that surfzone concentrations of &were related to
both the Bakun upwelling index and an index they createdrteasureshe intermittency of
upwelling,the Intermittencyndex.The relationships were complex with lower @hl
concentrations at low and high values of both the Bakun upwellingnéerittencyindices
(Figure 3A,B.redrawn from Menge and Menge (2013j)stationan central Oregomvith
similar or identicalvalues of the Bakun upwelling angtérmittencyindices, however, the Chl
concentration'varied by a factor of 5 from 5 to 25 pg/L (Figure 3). This pattern af Chl
concentration'might be due to the chance distribution of wide and narrow surf zones laenong t
study sites. In Figure 3C and D, we pdatsurfzone width with the Bakun upwelling and
Intermitteneyhdices; at low and high values of the indices, surf zooexidentallytended to
be narrowwhile‘at intermediate values of the indices surfzone width ranged from narrow to quite
wide (> 150 m) When the surfzone Chlconcentratior{dependent variableyas regressed with
surfzone width (independent variablaknost65% of the variability in Chi was explained by
surfzone width(Figure 4A) narrow more reflective surf zones contained lower concentrations of
Chl a than.wider more dissipative surf zones.

Perhaps'the effect of offshore coastal hydrodynamics would become apparent if we
scaled Chhl.concentrations by the effect of surfzone hydrodynamiascelfculated the residuals
from the regression between surfzone width (independent variable) aacc@mtentration
(dependent variable) and then calculated regressions between these resideiate(dep
variable) and th&akun upwelling index and thatermittency index (independent variables);
these regressions were not significant (Figure @)BThus,Prediction 5s not supported, and
instead, asvith'Subsidies of larvae to the shore, phytoplankton subsidies to the shore vary with
surfzone hydrodynamics.

Conclusion

Ourreconsideration of the evidenfoe thelUH findsthatthe hypothesis is not
supported. LLarvae of many intertidal taxa are riotnd in the surface Ekman lay@here
larvaewouldshave to occur if upwelling were to transport them offshore ataheof
intertidalinvertebrate speciaf not occur farther offshore during upwelling and closer to shore
during downwellingasproposed. BDaily settlement of barnacle cyprids and the abundance of
crab megalopae at the sharenot higher during downwelling and lower during upwelling, but,
instead vary with a fortnightly periodicity likely due to onshore transport by tidatigrgéed
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internal waves4) Recruitment of mussetnd barnacle® artificial settlement substratesried
inversely with two measures of desiccation potential, did not vary with thmggtref upwelling
and downwelling, but did vary directly with surfzone width, an indicator of surfzone
hydrodynamicstarval subsidies were significantly higher where surf zones were more
dissipative 5).Like larval subsidies, phytoplankton subsidies to the shoredwaith surfzone
hydrodynamics. Shelf hydrodynamics clearly affect phytoplankton abundance, but in the data
currently available, thigariation in abundance is owtradowed by the effect of surfzone
hydrodynamics on the delivery of subsidies to the siHdrelUH has persisted for three decades
even though critical tesof transport processes were,naitil fairly recently,conducted at sea,
alternativehypotheses were not seriously evaluated inclustindiesndicatingthat behavior is
effective atregulating crosshelf transport ofarvae(Shanks 1995, Queiroga and Blanton 2004,
Morgan 2014, Morgan et al. 2017b) and other zooplankton (Peterson et al. 1979, Peterson 1998).
To test the IUKHwe have focused on the CLME where the preponderance of studies
have been.conducted, the hypoth@gsoriginatedby researchers on the West Caasd the
authors ofsthisspap@&onduct their researchere Given that the hydrodynamics of wind-driven
coastal upwelling/downwelling is essentially the same at each of the eastern boundary current
systems,"we_suspect that what is true foilGG&ME likely appliesto these other systems as
well, althoughthis assumption needs testing. Of particuléenest is what happens in systems
such as tbseoff South Africa and Peru/Chile where the oxygen minimum layer is frequently
present below the mixed layer across the continental shelf; does this layer of low oxygen water
prevent larvaesfrom swimming dowiawd to avoid the surface Ekman layer? If larvae are unable
to avoid thessurface Ekman layer, then they may, as predicted by the IUH, be transported
seaward during upwelling events.

The effect of surfzone hydrodynamics on the delivery of subsidies (phytoplankton and
larvae) to the shore should be similar everywhere. The effects are primarily due to the physics of
surf zones.and./physical processes are conservative. Researchers influenced by the IUH have
viewed alongshorehanges in intertidal community stture as gradients or clines driven by the
gradual changes in the strength and persistence of upwelling along a coast. In our Werk on t
effects of surfzone hydrodynamics on subsidies to the slverbave not seen gradieatisd
instead find the variation in the structure of intertidal communities alongs#linedo be a
mosaic driven apparently largely by the form of the surf zone adjacent to the dteferrm
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thata surf zone takes, dissipative to reflective, is largely driven by the slope bbtom
beneath the surf zone. Coastal geomorphology can be consistent over long distances. For
example, thentireBig Sur coast of California isteep and nearly all of the surf zones at beaches
and rocky_shores are narrow and more reflective. In other areas, the geomorphology can change
over short distances. This appears to be the case from roughly Cape Mendocino, California
through Oregon. Here we have found rocky shorelines with reflective surf zones adjaoekt to r
platforms imbedded in more dissipative surf zones (e.g., Strawberry Hill vst8Bdg). In
these situations, over surprisingly short distances (10s of m), we have seen ordgritfdaa
changes in the delivery of subsidies (larval settlers and phytoplankton foodstwtieg Shanks
et al. 2017a, Shanks et al. 2017c). What our studies suggest is that shores with npate/eissi
surf zones'and‘higher subsidies tend to have intertidal communities dominateer igdders
(particularly barnacles) while shores with more reflective surf zones tend to have communities
with far fewer filter feeders andenser populations of benthic macrophytes (Shanks et al. 2010,
E. ConserUnpublished Data). Our research on surf zones has forced us to see the world of
intertidal ecology fom a very different perspective, one where benthic pelagic coupling and
intertidal community structure is largely controlled by very nearshore hydrodysamtich in
turn is controlled by geomorphology.
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822 Table 1. Averagenaximum low tide temperature as measured by Robomussels at stations
823 sampled by-Helmuth et al. (2016) along the west coast of North America. See text for the
824  methods.

825

Station Name Latitude N | Longitude W | Ave Max Low Tide
Temperature®C
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Coal Oil Point 34.4067 119.8783 36.2
Jalama 34.4952 120.4969 33.7
Piedras 35.6658 121.2867 41.7
Hopkins 36.6219 121.9053 41.4
Bodega Reserve | 38.3185 123.0740 42
Cape Mendecino..| 40.348 124.3650 33.3
Trinidad 41.0621 124.1493 31.7
Cape Arago 43.3066 124.4024 36
Strawberry. 44,2499 124.1136 37
Boilers Bay 44.8306 124.0601 31.6
Landing Beach 48.3938 124.7355 28.3

826

827

828

829

830 Table 2. Regression equations used to calculate alongshore wind stress and average maximum

831 low tide temperature at stations sampled in Broitman. ¢2008) and Shanks et al. (2017a).

Regression n R P Regression Equation
Alongshore 11 0.848 |<0.0004 |y =0.003028 X+ (-0.3857
Wind Stress; x?)+(16.217 X)-224.479

Broitman ét al.
(2008 analysis

Alongshore 15 0.634 | <0.00006]|y = 0.00224 X+ (-0.2865
Wind Stress; x?)+(12.0948 x)-168.1436
Shanks etal.

(2017a) analysis
Ave. Maximum | 11 0.362 | =0.05 Y =-0.587 x + 59.83
Low Tide

Temperature

832
833
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834

835 FigureCaptions

836  Figure 1. Regressions of three environmental variables at study sites along the west coast of the
837 USA. Samples stations are those from Broitman et al. (2008) (open cacteShanks et al.

838 (Shanks et.alk,2017a) (filled triangles). A) Alongshore wind stress during three fydedata

839 (2001-2003) frem Broitman et al. (2008) reanalyzed here and from the study by Shanks et al.
840 (2017a)’ The'dotted and dashed lines are the results of regressions (see Taielgrédsion

841 equations) between the alongshore wind stress data and latitude for the Betighamd

842 Shanks et al. data, respectively. Wind stress values are from wind data collected by NOAA
843  weather buoys: B) Average daily solar radiation (KWday) at each station sampled by

844  Broitman et‘alrand Shanks et al. with the results of a regression between latitude and solar
845 radiation (dotted line). Open diamonds are the average maximum low tide Rgebmus

846 temperatures (°C, see text for methods) with the results of a regression between latitude and the
847 average maximum low tide Robomussel temperatures (dashed line, see Table 2 for regression
848 equation).C)*Average surfzone width as determined from Google Earth imageshé&lot

849 increase in‘theffrequency of stations with wigd @0 m) more dissipative surf zones north of

850 Cape Mendocino. The dotted and dashed lineste results of regressions between surfzone
851  width and<atitude for the Broitmaet al. and Shanks et al. data, respectively. A description of
852 the techniques used to measure surfzone width and the reliability of the datsardqut in

853 Shanks etal2017a) and Shanks et al. (2073 he vertical dotted lines indicate the locations
854  of prominenteapes (PC, Point Conception; CM, Cape Mendocino; CB, Cape Blanco.)

855

856  Figure 2. Variation in the density bfytilus andBalanus recruits ((A, D, G, Jand B, E, K,

857  respectively, data from Broitman, 2008) and barnacle recruits (C, F, I, and L,afat8lanks

858 et al. 2017a).with four physical variables from the west coast of the USA. A-Cadevdaily

859  solar radiation.((KWh/fiday). DF) Average maximum low tide temperature from Robomussels
860 (see text fordetails). ©§ Average alongshore wind stress in dynes. Positive (negative) values
861 are upwelling,(downwelling) favorable. J-L) Surfzone width as determined froogl& Earth

862 images (see Shanks et al. 2017&ranethods). Note that if a Bonferroni correction was applied
863 to the set of four regressions calculated for each data set then the oegreEsivould not be

864  significant (corrected alpha = 0.0125).
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865

866  Figure 3. Variation in Chh concentration and surfzonedih relative to two upwelling indices,
867  (A) the Bakun Upwelling index and (B) the Intermittency index (redrawn fromgdend

868 Menge (2013))..The dotted lines are the results of a regression analysis. See Menge and Menge
869 (2013) for a.description of methods and statistical analysis. The Bakun Upwetiaygis a

870 measure of the strength of upwelling while the Intermittency index was dedddgpgdenge and
871 Menge (2003)as a measure of the frequency of upwelling. Triangles are data from the Sout
872 Island of NewZealand, diamonds are from Oregon stations, and circles from nodh&nmia

873 stations. In C and D, the Bakun Upwelling and Intermittency indices, respectiespiptted

874  with averagesurfzone widtt the sampled statioas determined from Google Barmages

875 (see Shanks etal. 2017dpc methods).

876

877  Figure 4. Variation in Chh concentration (data from Menge and Menge 2013) relative to three
878 environmental variables. A) Average surfzone width as determined from Goaotlargages of
879 the stationswsapled by Menge and Menge (2013). See Shanks et al. (2017a, c) for methods of
880 determining surfzone width from Google Earth images. Using the regressioroaduai (A),

881  we calculated residuals and then regressed these (dependent variable) againBai@)rthe

882 Upwellingsndex and (C) the Intermittency index (independent variable, data froge\éand

883 Menge 2013). Neither regression was significant.

884

885

886
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